How To Wiki
No edit summary
Wagnike2 (talk | contribs)
m (clean up, typos fixed: lenght → length, a offline → an offline)
 
(31 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{incompleat}}
+
{{incomplete}}
   
 
The [[transformer]] for a [[flyback converter]] is used as the converters [[inductor]] as well as an isolation transformer.
 
The [[transformer]] for a [[flyback converter]] is used as the converters [[inductor]] as well as an isolation transformer.
Line 5: Line 5:
 
=Variables and acronyms=
 
=Variables and acronyms=
 
*Universal constants
 
*Universal constants
** Permittivity of free space <math>\mu_o</math> (Wb A<sup>-1</sup> m<sup>-1</sup>)
+
** Permittivity of free space <math>\mu_o</math> (Wb A<sup>−1</sup> m<sup>−1</sup>)
***<math>\mu_o = 4\pi 10^{-7}</math> (Wb A<sup>-1</sup> m<sup>-1</sup>)
+
***<math>\mu_o = 4\pi 10^{-7}</math> (Wb A<sup>−1</sup> m<sup>−1</sup>)
   
   
Line 27: Line 27:
   
 
*Core parameters
 
*Core parameters
** <i>EC35, PQ 20/16, 704, etc</i>, Core type (mm)
+
** ''EC35, PQ 20/16, 704, etc'', Core type (mm)
 
** <math>K_g</math>, Geometrical constant (cm<sup>5</sup>)
 
** <math>K_g</math>, Geometrical constant (cm<sup>5</sup>)
 
** <math>K_{gfe}</math>, Geometrical constant (cm<sup>x</sup>)
 
** <math>K_{gfe}</math>, Geometrical constant (cm<sup>x</sup>)
Line 35: Line 35:
 
** <math>l_m</math>, Magnetic path length (cm)
 
** <math>l_m</math>, Magnetic path length (cm)
 
** <math>l</math>, or <math>l_g</math>, Air gap length (cm)
 
** <math>l</math>, or <math>l_g</math>, Air gap length (cm)
** <math>\mu</math>, Permittivity (Wb A<sup>-1</sup> m<sup>-1</sup>)
+
** <math>\mu</math>, Permittivity (Wb A<sup>−1</sup> m<sup>−1</sup>)
 
** <math>\mu_r</math>, Relative Permittivity (unitless)
 
** <math>\mu_r</math>, Relative Permittivity (unitless)
 
***<math>\mu = \mu_o \mu_r</math>
 
***<math>\mu = \mu_o \mu_r</math>
Line 43: Line 43:
 
*MLT: mean length turn
 
*MLT: mean length turn
 
*AWG: American wire gauge
 
*AWG: American wire gauge
  +
  +
=Initial calculations=
  +
  +
;Variables
  +
* <math>V_o</math> - output voltage [V]
  +
* <math>V_{in}</math> - input voltage [V]
  +
* <math>V_D</math> - diode voltage drop [V]
  +
* <math>V_{Rds}</math> - transistor on voltage [V]
  +
* <math>N</math> - turns ratio [unitless]
  +
* <math>D</math> - duty cycle [unitless]
  +
  +
;Calculate turns ratio
  +
<math>\frac{ V_o + V_D }{ V_{in} - V_{Rds} } = \frac{ 1 }{ N } * \left ( \frac{ D_{max} }{ 1 - D_{max} } \right )</math>
  +
  +
* Diode
  +
** Rectifier: <math>V_D = 0.8V</math>
  +
** Schottky diode: <math>V_D = ?</math>
   
 
=Inductance calculations=
 
=Inductance calculations=
Line 50: Line 67:
 
<math>
 
<math>
 
\Delta i = 0.5 * I
 
\Delta i = 0.5 * I
  +
</math>
  +
  +
  +
  +
;Solve for <math>L_m</math>:
  +
let <math>n = \frac{n_2}{n_1}</math><br />
  +
  +
<math>
  +
I=\frac{n}{D'}I_{load}
 
</math><br />
 
</math><br />
   
Derivation:<br />
 
 
<math>
 
<math>
I=\frac{n}{D'}I_{load}\\
+
\Delta i = \frac{nI_{load}}{2D'}
\Delta i = \frac{nI_{load}}{2D'}\\
 
L_m = \frac{V_g D T_s}{2 \Delta i}\\
 
 
</math><br />
 
</math><br />
   
  +
<math>
 
L_m = \frac{V_g D T_s}{2 \Delta i}
  +
</math><br />
   
 
<math>
 
<math>
L_m=\frac{\mu A_c n^2}{l}
+
L_m=\frac{\mu A_c n_1^2}{l}
</math>
+
</math><br />
  +
  +
The permittivity of free-space is so much larger than the permittivity the transformer material, that the magnetic path length, <math>l</math>, can be estimated to be the air gap length, <math>l_g</math>. so <math>l = l_g</math> and<br />
  +
<math>
  +
L_m=\frac{\mu_o A_c n_1^2}{l_g}
  +
</math><br />
  +
  +
;Solve for <math>n</math>:
  +
Minimize total power loss: <math>P_{tot} = P_{fe} + P_{cu}</math><br />
  +
Core loss: <math>P_{fe} = K_{fe} \Delta B^\beta A_c l_m</math><br />
  +
  +
<math>B_{ac} = \frac{L_m \Delta i}{n_1 A_c}</math><br />
  +
The <math>\beta</math> and <math>K_{fe}</math> are in the core material's datasheets<br />
  +
  +
=Core calculations=
  +
  +
==Core selection==
  +
  +
;Variables
  +
* <math>P_{Fe}</math> - power loss in the core [<math>W</math>]
  +
* <math>B_{sat}</math> - saturation flux density [<math>T</math>]
  +
* <math>B_{max}</math> - max flux density [<math>T</math>]
  +
* <math>\Delta B </math> - change in flux density [<math>T</math>], aka <math>B_{ac}</math>
  +
* <math>A_w</math> - winding area [<math>cm^2</math>]
  +
* <math>A_e</math> - effective cross-setional area of the core [<math>cm^2</math>]
  +
* <math>AP</math> - Area Product [<math>cm^4</math>]
  +
* <math>K_u</math> - window utilization factor, or fill factor [unitless]
  +
* <math>N_P</math> - number of turns on the primary [unitless]
  +
* <math>N_S</math> - number of turns on the secondary [unitless]
  +
* <math>N_B</math> - number of turns on the bias [unitless]
  +
* <math>\mu_o</math> - permittivity of free space (air) <math>\mu_o = 2 \pi 10^{-7}</math> [H/m]
  +
  +
  +
;Material specifications
  +
{|border=1
  +
!Grade
  +
!<math>B_{sat}</math> [T]
  +
!Specific Power Losses @100 °C [W/cm3]
  +
!Manufacturer
  +
|-
  +
|B2
  +
|0.36
  +
|<math>P_{Fe} = 1.15 * 10^{-5} * \Delta B^{2.26} * f_{sw}^{1.11}</math>
  +
|THOMSON
  +
|-
  +
|3C85
  +
|0.33
  +
|<math>P_{Fe} = 1.54 * 10^{-7} * \Delta B^{2.62} * f_{sw}^{1.54}</math>
  +
|PHILIPS
  +
|-
  +
|N67
  +
|0.38
  +
| <math>P_{Fe} = 8.53 * 10^{-7} * \Delta B^{2.54} * f_{sw}^{1.36}</math>
  +
|EPCOS (ex S+M)
  +
|-
  +
|PC30
  +
|0.39
  +
|<math>P_{Fe} = 1.59 * 10^{-6} * \Delta B^{2.58} * f_{sw}^{1.32}</math>
  +
|TDK
  +
|-
  +
|F44
  +
|0.4
  +
|<math>P_{Fe} = 2.39 * 10^{-6} * \Delta B^{2.23} * f_{sw}^{1.26}</math>
  +
|MMG
  +
|}
  +
  +
  +
  +
;Calculate minimal AP needed
  +
<math>AP_{min} = 10^3 * \left ( \frac{ L_p * I_{Prms} }{ \Delta T^{ \frac{1}{2} } * K_u * B_{max} } \right )^{1.316}</math> [<math>cm^4</math>]
  +
  +
*<math>B_{max}</math> should be less than <math>B_{sat}</math>, to avoid core saturation. for example <math>B_{sat} > 0.3T</math>, then for a conservative calculation use <math>B_{max} = 0.25T</math>
  +
  +
*<math>\Delta T = T_{max} - T_{amb}</math>
  +
*:Generally <math>T_{max} = 100C</math> and <math>T_{amb}=30C</math>
  +
  +
*Using <math>K_u=0.3</math> for off-line power supplies is a good estimate
  +
  +
;Calculate minimum number of primary and secondary turns
  +
*<math>N_{P-min} = \frac{ L_p * I_{pk} * 10^4 }{ B_{max} * A_e }</math>
  +
*<math>N_{S-min} = \frac{ N_{P-min} }{ N }</math>
  +
  +
;Calculate actual number of turn on the primary and secondary to be used.
  +
*<math>N_S</math>: Round up <math>N_{S-min}</math> to the nearest integer
  +
*<math>N_P = N * N_S</math>
  +
  +
;Calculate air gap
  +
<math>l_g = \frac{ \mu_o * N_P^2 * A_e * 10^{-2} }{ L_p }</math>
  +
  +
=Current calculations=
  +
  +
;Variables
  +
*<math>I_{pk}</math> - Ripple current max peak
  +
*<math>I_{min}</math> - Ripple current min peak
  +
*<math>\Delta I_{pp}</math> - pk-pk ripple current <math>I_{pk} - I_{min}</math>
  +
  +
;Peak current
  +
<math>I_{pk} = \left ( \frac{ I_{out-max} }{ N } \right ) * \left ( \frac{ 1 }{ 1 - D_{max} } \right ) + \frac{ \Delta I_L }{ 2 }</math>
  +
  +
;DC current
  +
<math>I_{dc}=D \frac{I_{pk}+I_{min}}{2}</math>
  +
  +
;RMS current
  +
<math>I_{rms}=\sqrt{ D \left ((I_{pk}+I_{min}) + \frac{1}{3} (I_{pk}+I_{min})^2 \right )}</math>
  +
  +
;AC current
  +
<math>I_{rms}=\sqrt{ I_{rms}^2 - I_{dc}^2 }</math>
  +
  +
  +
=Power Loss=
  +
<math>P_{tot}=P_{fe}+P_{cu}</math>
   
 
=References=
 
=References=
* [http://ecee.colorado.edu/~ecen4517/materials/flyback.pdf Flyback transformer design]
+
* [http://ecee.colorado.edu/~ecen4517/materials/flyback.pdf U of Colorado - Flyback transformer design]
  +
* [http://focus.ti.com/lit/ml/slup126/slup126.pdf TI - "Magnetics Design 4 - Power Transformer Design"] - very good, long, description of transformers and design
  +
* [http://www.tdk.co.jp/tefe02/e140_1.pdf TDK ferrite materials]
  +
* [http://www.irf.com/technical-info/appnotes/an-1024.pdf IRF - Flyback Transformer Design] - nice description of howto wind the transformer
  +
* [http://focus.ti.com/lit/ml/slup127/slup127.pdf TI - Magnetics Design 5 - Inductor and Flyback Transformer Design] - describes various converters DCM and CCM
  +
* [http://www.st.com/stonline/books/pdf/docs/7310.pdf OFFLINE FLYBACK CONVERTERS DESIGN METHODOLOGY WITH THE L6590 FAMILY] - very good, full description of designing an offline flyback converter
  +
* [http://focus.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=slua086&fileType=pdf Isolated 50 Watt Flyback Converter Using the UCC3809]
  +
* [http://www.powerdesignindia.co.in/STATIC/PDF/200903/PDIOL_2009MAR19_SUPPLY_AN_01.pdf?SOURCES=DOWNLOAD TOPSwitch Flyback Transformer Construction Guide]
  +
[[Category:Electronics]]
  +
[[Category:Howto]]

Latest revision as of 16:22, 17 December 2013

Warning: This page it's very incomplete, use this article, particular has very caution! Please help finish it this page!




The transformer for a flyback converter is used as the converters inductor as well as an isolation transformer.

Variables and acronyms

  • Universal constants
    • Permittivity of free space (Wb A−1 m−1)
      • (Wb A−1 m−1)


  • Wire variables:
    • , Wire resistivity (Ω-cm)
    • , Total RMS winding currents (A)
    • , Peak magnetizing current (A)
    • , Max RMS current, worst case (A)
    • , Allowed copper loss (W)
    • , Cross sectional area of wire (cm2)


  • Xformer/inductor design parameters
    • , turns (turns)
    • , Magnetizing inductance (for an xformer) (H)
    • , Inductance (H)
    • , Winding fill factor (unitless)
    • , Core maximum flux density (T)


  • Core parameters
    • EC35, PQ 20/16, 704, etc, Core type (mm)
    • , Geometrical constant (cm5)
    • , Geometrical constant (cmx)
    • , Cross-sectional area (cm2)
    • , Window area (cm2)
    • , Mean length per turn (cm)
    • , Magnetic path length (cm)
    • , or , Air gap length (cm)
    • , Permittivity (Wb A−1 m−1)
    • , Relative Permittivity (unitless)
Acronyms
  • RMS: root-mean-squared - (where denotes the arithmetic mean)
  • MLT: mean length turn
  • AWG: American wire gauge

Initial calculations

Variables
  • - output voltage [V]
  • - input voltage [V]
  • - diode voltage drop [V]
  • - transistor on voltage [V]
  • - turns ratio [unitless]
  • - duty cycle [unitless]
Calculate turns ratio

  • Diode
    • Rectifier:
    • Schottky diode:

Inductance calculations

The inductance of the transformer, , controls the current ripple.

Say you want a current ripple 50% of average current.


Solve for

let





The permittivity of free-space is so much larger than the permittivity the transformer material, that the magnetic path length, , can be estimated to be the air gap length, . so and

Solve for

Minimize total power loss:
Core loss:


The and are in the core material's datasheets

Core calculations

Core selection

Variables
  • - power loss in the core []
  • - saturation flux density []
  • - max flux density []
  • - change in flux density [], aka
  • - winding area []
  • - effective cross-setional area of the core []
  • - Area Product []
  • - window utilization factor, or fill factor [unitless]
  • - number of turns on the primary [unitless]
  • - number of turns on the secondary [unitless]
  • - number of turns on the bias [unitless]
  • - permittivity of free space (air) [H/m]


Material specifications
Grade [T] Specific Power Losses @100 °C [W/cm3] Manufacturer
B2 0.36 THOMSON
3C85 0.33 PHILIPS
N67 0.38 EPCOS (ex S+M)
PC30 0.39 TDK
F44 0.4 MMG


Calculate minimal AP needed

[]

  • should be less than , to avoid core saturation. for example , then for a conservative calculation use
  • Generally and
  • Using for off-line power supplies is a good estimate
Calculate minimum number of primary and secondary turns
Calculate actual number of turn on the primary and secondary to be used.
  • : Round up to the nearest integer
Calculate air gap

Current calculations

Variables
  • - Ripple current max peak
  • - Ripple current min peak
  • - pk-pk ripple current
Peak current

DC current

RMS current

AC current


Power Loss

References