How To Wiki
(Vg was different in the spec from the calculations. Changed to 150V)
Tag: Visual edit
 
(27 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 
A [[snubber]] circuit is essential for [[Flyback converter]], to prevent the transistor from burning up. The overshoot on the transistor voltage, is due to the leakage inductance, <math>L_k</math>, of the transformer.
 
A [[snubber]] circuit is essential for [[Flyback converter]], to prevent the transistor from burning up. The overshoot on the transistor voltage, is due to the leakage inductance, <math>L_k</math>, of the transformer.
  +
[[File:Flyback w snubber.svg]]
 
=Variables=
+
==Variables==
 
* <math>P_s</math> - max power dissipated by the snubber resistor
 
* <math>P_s</math> - max power dissipated by the snubber resistor
 
* <math>R_s</math> - snubber resistor
 
* <math>R_s</math> - snubber resistor
Line 8: Line 8:
 
* <math>f_s</math> - switching frequency
 
* <math>f_s</math> - switching frequency
 
* <math>V_g</math> - Input voltage to the converter
 
* <math>V_g</math> - Input voltage to the converter
* <math>V_t</math> - max acceptable transistor voltage
+
* <math>V_t</math> - transistor max acceptable voltage
 
* <math>I</math> - average input current
 
* <math>I</math> - average input current
 
* <math>L_m</math> - magnetizing inductance of the transformer
 
* <math>L_m</math> - magnetizing inductance of the transformer
* <math>L_k</math> - magnetizing inductance of the transformer
+
* <math>L_k</math> - leakage inductance of the transformer
* <math>V_{t-peak}</math> - peak transistor voltage, spec from datasheet
+
* <math>V_{t-peak}</math> - transistor peak voltage, spec from datasheet
 
=Design=
 
   
  +
==Transistor snubber design==
 
;Leakage inductance
 
;Leakage inductance
It is not easy to calculate the leakage inductance of a transformer, but it can be measured after the transformer is built, or if a prebuilt transformer is used, it can be obtained from a datasheet. It can be assumed that the leakage inductance is 3% of the magnetizing inductance, <math>V_m</math>.
+
It is not easy to calculate the leakage inductance of a transformer, but it can be measured after the transformer is built, or if a prebuilt transformer is used, it can be obtained from a datasheet. It can be assumed that the leakage inductance is 3% of the magnetizing inductance, <math>L_m</math>.
   
 
<math>L_k \approx 0.03 * L_m</math>
 
<math>L_k \approx 0.03 * L_m</math>
<br /><br />
 
   
  +
  +
  +
If a transformer is well designed, leakage inductance can be reduced to 1% of the magnetizing inductance.
  +
  +
  +
  +
  +
===RCD snubber===
 
;Snubber resistor
 
;Snubber resistor
To calculate the snubber resistance, <math>R_s</math>, an acceptable max transistor voltage, <math>V_t</math>. You want to select a <math>V_t</math> that has a wide margin from the peak transistor voltage rating specified in it's datasheet. It still must be greater than the transistors blocking voltage, <math>V_g + V/n</math><br />
+
To calculate the snubber resistance, <math>R_s</math>, an acceptable max transistor voltage, <math>V_t</math>. You want to select a <math>V_t</math> that has a wide margin from the peak transistor voltage rating specified in its datasheet. It still must be greater than the transistors blocking voltage, <math>V_g + V/n</math><br />
 
<math>V_{t-peak} > V_t > Vg + V/n</math><br />
 
<math>V_{t-peak} > V_t > Vg + V/n</math><br />
   
Line 31: Line 37:
 
<math>V_s = V_t - V_g</math><br />
 
<math>V_s = V_t - V_g</math><br />
 
<math>R_s = V_s^2/P_s</math>
 
<math>R_s = V_s^2/P_s</math>
  +
<br /><br />
 
  +
  +
   
 
;Snubber capacitor
 
;Snubber capacitor
   
<math>C_s >> T_s/R_s</math>
+
<math>C_s >> \frac{ 1 }{ f_s*R_s }</math>
  +
<br /><br />
 
  +
  +
  +
  +
;Snubber diode
  +
The diode voltage must be able to block voltage a high voltage, 1N4007 tends to work.
  +
 
===Example===
 
Flyback using the following specifications:
  +
 
<math>V_g = 150~{\rm V},\ V_{out} = 30~{\rm V},\ n = 0.2,\ f_s = 50~{\rm kHz},\ L_m = 320~{\rm \text{µ}H},\ I = 5~{\rm A},\ V_{t-peak} = 500~{\rm V}</math>
  +
 
====Calculations====
 
*<math>V_{t-peak} > V_t > Vg + \frac{V_{out}}{n}</math>
 
*<math>400~{\rm V} > V_t > 150 + \frac{30}{0.2}</math>
 
*<math>400~{\rm V} > V_t > 300</math>
 
*Select: <math>V_t = 325~{\rm V}</math>
 
*<math>L_k = 0.03 \times L_m = (0.03)(0.001) = 30~{\rm \text{µ}H}</math>
  +
*<math>P_s = \frac{1}{2} L_f I^2 f_s = (0.5)(30~{\rm \text{µ}H})(1.5~{\rm A})^2(100~{\rm kHz}) = 3.375~{\rm W}</math>
 
*<math>V_s = V_t - V_g = 175~{\rm V} </math>
 
*<math>R_s = \frac{V_s^2}{P_s} = 9074~\Omega</math>
 
*Select: <math>R_s = 10~{\rm k\Omega},\ 5~{\rm W}</math>
 
*<math>C_s >> \frac{T_s}{R_s} = \frac{10~{\rm \text{µ}s}}{10~{\rm k\Omega}} = 1~{\rm nF}</math>
 
*Select: <math>C_s = 47~{\rm nF},\ 500~{\rm V}</math>
   
  +
==Schottky snubber design==
=Example=
 
  +
If you choose to use a schottky diode its a good idea to have a snubber.
flyback using the following specs.
 
<math>V_g=150V, V = 15V, n = 0.2, f_s = 100kHz, L_m = 1mH, I = 1.5A, V_{t-peak} = 400V</math>
 
   
  +
;design to be added
==Calculations==
 
*<math>V_{t-peak} > V_t > Vg + V/n</math>
 
*<math>400V > V_t > 150 + 15/0.2</math>
 
*<math>400V > V_t > 225</math>
 
*Select: <math>V_t=325V</math>
 
*<math>L_k=0.03*L_m=(0.03)(0.001)=30uH</math>
 
*<math>P_s = 1/2L_fI^2f_s = (0.5)(30uH)(1.5A)^2(100kHz)=3.375W</math>
 
*<math>V_s = V_t - V_g=325-150=175V</math>
 
*<math>R_s = V_s^2/P_s=(175V)^2/(3.375W)=9074\Omega</math>
 
*Select: <math>R_s = 10k\Omega</math>, 5W
 
*<math>C_s >> T_s/R_s = (10uS)/(10k\Omega) = 1nF</math>
 
*Select: <math>C_s = 47nF</math>, 500V
 
   
=References=
+
==References==
 
* [http://ecee.colorado.edu/~ecen4517/materials/flyback.pdf Flyback transformer design]
 
* [http://ecee.colorado.edu/~ecen4517/materials/flyback.pdf Flyback transformer design]
* [http://www.st.com/stonline/books/pdf/docs/10733.pdf Converter Improvement Using
+
* [http://www.st.com/stonline/books/pdf/docs/10733.pdf Converter Improvement Using Schottky Rectifier Avalanche Specification]
  +
[[Category:Howto]]
Schottky Rectifier Avalanche Specification]
 
  +
[[Category:Electronics]]

Latest revision as of 17:19, 15 December 2020

A snubber circuit is essential for Flyback converter, to prevent the transistor from burning up. The overshoot on the transistor voltage, is due to the leakage inductance, , of the transformer. Flyback w snubber

Variables

  • - max power dissipated by the snubber resistor
  • - snubber resistor
  • - snubber capacitor
  • - switching period
  • - switching frequency
  • - Input voltage to the converter
  • - transistor max acceptable voltage
  • - average input current
  • - magnetizing inductance of the transformer
  • - leakage inductance of the transformer
  • - transistor peak voltage, spec from datasheet

Transistor snubber design

Leakage inductance

It is not easy to calculate the leakage inductance of a transformer, but it can be measured after the transformer is built, or if a prebuilt transformer is used, it can be obtained from a datasheet. It can be assumed that the leakage inductance is 3% of the magnetizing inductance, .


If a transformer is well designed, leakage inductance can be reduced to 1% of the magnetizing inductance.



RCD snubber

Snubber resistor

To calculate the snubber resistance, , an acceptable max transistor voltage, . You want to select a that has a wide margin from the peak transistor voltage rating specified in its datasheet. It still must be greater than the transistors blocking voltage,

Using this, you can calculate , and





Snubber capacitor



Snubber diode

The diode voltage must be able to block voltage a high voltage, 1N4007 tends to work.

Example

Flyback using the following specifications:

Calculations

  • Select:
  • Select:
  • Select:

Schottky snubber design

If you choose to use a schottky diode its a good idea to have a snubber.

design to be added

References